Picture-ANA allows profiling of host–micro organism protein interactions throughout an infection

Mullard, A. The lethal burden of drug-resistant micro organism. Nat. Rev. Drug Discov. 21, 170 (2022).

Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

LaRock, D. L., Chaudhary, A. & Miller, S. I. Salmonellae interactions with host processes. Nat. Rev. Microbiol. 13, 191–205 (2015).

Powers, T. R. Intracellular niche-specific profiling reveals transcriptional diversifications required for the cytosolic way of life of Salmonella enterica. PLoS Pathog. 17, e1009280 (2021).

Dandekar, T., Astrid, F., Jasmin, P. & Hensel, M. Salmonella enterica: a surprisingly well-adapted intracellular way of life. Entrance. Microbiol. 3, 164 (2012).

Jean Beltran, P. M., Federspiel, J. D., Sheng, X. & Cristea, I. M. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious illnesses. Mol. Syst. Biol. 13, 922 (2017).

Dieterich, D. C., Hyperlink, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells utilizing bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl Acad. Sci. USA 103, 9482–9487 (2006).

Schmidt, F. & Volker, U. Proteome evaluation of host-pathogen interactions: investigation of pathogen responses to the host cell atmosphere. Proteomics 11, 3203–3211 (2011).

Zhang, B. et al. Contributions of mass spectrometry-based proteomics to understanding Salmonella-host interactions. Pathogens 9, 581 (2020).

D’Costa, V. M. et al. BioID display of Salmonella kind 3 secreted effectors reveals host elements concerned in vacuole positioning and stability throughout an infection. Nat. Microbiol. 4, 2511–2522 (2019).

Sontag, R. L. et al. Identification of novel host interactors of effectors secreted by Salmonella and Citrobacter. mSystems 1, e00032–15 (2016).

Mirrashidi, Ok. M. et al. World mapping of the Inc-human interactome reveals that retromer restricts Chlamydia an infection. Cell Host Microbe 18, 109–121 (2015).

Auweter, S. D. et al. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding companions. J. Biol. Chem. 286, 24023–24035 (2011).

Nicod, C., Banaei-Esfahani, A. & Collins, B. C. Elucidation of host–pathogen protein–protein interactions to uncover mechanisms of host cell rewiring. Curr. Opin. Microbiol. 39, 7–15 (2017).

Walch, P. et al. World mapping of Salmonella enterica–host protein–protein interactions throughout an infection. Cell Host Microbe 29, 1316–1332 e12 (2021).

Tanrikulu, I. C., Schmitt, E., Mechulam, Y., Goddard, W. A. & Tirrell, D. A. Discovery of Escherichia coli methionyl-tRNA synthetase mutants for environment friendly labeling of proteins with azidonorleucine in vivo. Proc. Natl Acad. Sci. USA 106, 15285–15290 (2009).

Hyperlink, A. J. et al. Discovery of aminoacyl-tRNA synthetase exercise by means of cell-surface show of noncanonical amino acids. Proc. Natl Acad. Sci. USA 103, 10180–10185 (2006).

Ngo, J. T. et al. Cell-selective metabolic labeling of proteins. Nat. Chem. Biol. 5, 715–717 (2009).

Grammel, M., Zhang, M. M. & Grasp, H. C. Orthogonal alkynyl amino acid reporter for selective labeling of bacterial proteomes throughout an infection. Angew. Chem. Int. Ed. Engl. 49, 5970–5974 (2010).

Meldal, M. & Tornoe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).

Suchanek, M., Radzikowska, A. & Thiele, C. Picture-leucine and photo-methionine permit identification of protein-protein interactions in residing cells. Nat. Strategies 2, 261–267 (2005).

Seath, C. P., Trowbridge, A. D., Muir, T. W. & MacMillan, D. W. C. Reactive intermediates for interactome mapping. Chem. Soc. Rev. 50, 2911–2926 (2021).

Yang, T., Li, X.-M., Bao, X., Fung, Y. M. E. & Li, X. D. Picture-lysine captures proteins that bind lysine post-translational modifications. Nat. Chem. Biol. 12, 70–72 (2016).

He, D. et al. Quantitative and comparative profiling of protease substrates by means of a genetically encoded multifunctional photocrosslinker. Angew. Chem. Int. Ed. Engl. 56, 14521–14525 (2017).

Hoffmann, J. E., Dziuba, D., Stein, F. & Schultz, C. A bifunctional noncanonical amino acid: synthesis, expression, and residue-specific proteome-wide incorporation. Biochemistry 57, 4747–4752 (2018).

Joiner, C. M., Breen, M. E., Clayton, J. & Mapp, A. Ok. A bifunctional amino acid allows each covalent chemical seize and isolation of in vivo protein-protein interactions. ChemBioChem 18, 181–184 (2017).

Yamaguchi, A. et al. Incorporation of a doubly functionalized artificial amino acid into proteins for creating chemical and light-induced conjugates. Bioconjug. Chem. 27, 198–206 (2016).

Chen, Y. et al. A photograph-cross-linking technique to map websites of protein–protein interactions. Chemistry 16, 7389–7394 (2010).

Yang, T. P., Li, X. & Li, X. D. A bifunctional amino acid to review protein–protein interactions. RSC Adv. 10, 42076–42083 (2020).

Serre, L. et al. How methionyl-tRNA synthetase creates its amino acid recognition pocket upon l-methionine binding. J. Mol. Biol. 306, 863–876 (2001).

Husna, A. U. et al. Methionine biosynthesis and transport are functionally redundant for the expansion and virulence of Salmonella Typhimurium. J. Biol. Chem. 293, 9506–9519 (2018).

Galan, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial kind III secretion methods: specialised nanomachines for protein supply into goal cells. Annu. Rev. Microbiol. 68, 415–438 (2014).

Jennings, E., Thurston, T. L. M. & Holden, D. W. Salmonella SPI-2 kind III secretion system effectors: molecular mechanisms and physiological penalties. Cell Host Microbe 22, 217–231 (2017).

Liu, Y. et al. Quantitative proteomics charts the panorama of Salmonella carbon metabolism inside host epithelial cells. J. Proteome Res. 16, 788–797 (2017).

Li, Z. et al. Salmonella proteomic profiling throughout an infection distinguishes the intracellular atmosphere of host cells. mSystems 4, e00314–e00318 (2019).

Liu, Y. et al. Proteomic analyses of intracellular Salmonella enterica serovar Typhimurium reveal intensive bacterial diversifications to contaminated host epithelial cells. Infect. Immun. 83, 2897–2906 (2015).

Henry, T. et al. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc. Natl Acad. Sci. USA 103, 13497–13502 (2006).

Knodler, L. A. & Steele-Mortimer, O. The Salmonella effector PipB2 impacts late endosome/lysosome distribution to mediate Sif extension. Mol. Biol. Cell 16, 4108–4123 (2005).

Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).

Xu, L. et al. Inhibition of host vacuolar H+-ATPase exercise by a Legionella pneumophila effector. PLoS Pathog. 6, e1000822 (2010).

Wong, D., Bach, H., Solar, J., Hmama, Z. & Av-Homosexual, Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc. Natl Acad. Sci. USA 108, 19371–19376 (2011).

Matsuda, S., Okada, N., Kodama, T., Honda, T. & Iida, T. A cytotoxic kind III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes. PLoS Pathog. 8, e1002803 (2012).

Schmidt, F. et al. Flotillin-dependent membrane microdomains are required for useful phagolysosomes towards fungal infections. Cell Rep. 32, 108017 (2020).

Knodler, L. A. et al. Salmonella kind III effectors PipB and PipB2 are focused to detergent-resistant microdomains on inner host cell membranes. Mol. Microbiol. 49, 685–704 (2003).

Zhou, D., Mooseker, M. S. & Galan, J. E. An invasion-associated Salmonella protein modulates the actin-bundling exercise of plastin. Proc. Natl Acad. Sci. USA 96, 10176–10181 (1999).

Boucrot, E., Henry, T., Borg, J. P., Gorvel, J. P. & Meresse, S. The intracellular destiny of Salmonella relies on the recruitment of kinesin. Science 308, 1174–1178 (2005).

Nichols, C. D. & Casanova, J. E. Salmonella-directed recruitment of recent membrane to invasion foci by way of the host exocyst advanced. Curr. Biol. 20, 1316–1320 (2010).

McGourty, Ok. et al. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome perform. Science 338, 963–967 (2012).

Harrison, R. E. et al. Salmonella impairs RILP recruitment to Rab7 throughout maturation of invasion vacuoles. Mol. Biol. Cell 15, 3146–3154 (2004).

D’Costa, V. M. et al. Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Rep. 12, 1508–1518 (2015).

Dortet, L. et al. Recruitment of the key vault protein by InlK: a Listeria monocytogenes technique to keep away from autophagy. PLoS Pathog. 7, e1002168 (2011).

Bach, H., Papavinasasundaram, Ok. G., Wong, D., Hmama, Z. & Av-Homosexual, Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3, 316–322 (2008).

Mahdavi, A. et al. Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proc. Natl Acad. Sci. USA 111, 433–438 (2014).

Cox, J. & Mann, M. MaxQuant allows excessive peptide identification charges, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2006).

Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based strategy for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

Mootha, V. Ok. et al. PGC-1alpha-responsive genes concerned in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).

Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

Crooks, G. E. et al. WebLogo: a sequence brand generator. Genome Res. 14, 1188–1190 (2004).